Line Integrals

Background

line integral is denoted

$$\int_C f(x,y) ds$$

$$\int_C f(x,y) \sqrt{rac{dx}{dt}^2 + rac{dy}{dt}^2} dt$$

$$\int_C f(x,y) ||r'(t)|| dt$$

For a line integral with respect to arc length if we change the direction, the integral does not change.

$$\int_C f(x,y)ds = \int_{-C} f(x,y)ds$$

Example

Evaluate

 $\int_C x y^4 ds$ where C is the right half of the circle $x^2+y^2=r^2$

$$\int_{-rac{\pi}{2}}^{rac{\pi}{2}} xy^4 ds = rac{8192}{5}$$

Example 2

Evaluate $\int_C 4x^3 ds$ where C is the curve shown below

$$\int_{C_1} 4x^3 ds + \int_{C_2} 4x^3 ds + \int_{C_3} 4x^3 ds = -5.732$$

Example 2

Evaluate $\int_C 4x^3 ds$ where C is the line segment from (-2,-1) to (2,1)

$$ec{r} = <-2+3t, -1+3t>$$

$$\int_0^1 4x^3 ds = -21.213$$

Example 3

Evaluate $\int_C 4x^3 ds$ where C is the line segment from (2,1) to (-2,-1)

$$\vec{r} = <1-3t, 2-3t>$$

$$\int_0^1 4x^3 ds = -21.213$$

Work and line integrals

Work = Force x distance = \vec{F} . $\Delta \vec{r}$

Along a trajectory C, work add up to .

$$W=\int_C ec F.\,dec r$$

$$W = \lim_{\Delta o 0} \Sigma_i ec{F}.\, \Delta ec{r_i}$$

$$W = \lim_{\Delta o 0} \Sigma_i ec{F}.rac{\Delta ec{r_i}}{\Delta t} \Delta t$$

$$W=\int_{t_0}^{t_1}ec{F}.rac{dec{r_i}}{dt}dt$$

Example

$$F = -yi + xj$$

C.
$$x=t$$
, $y=t^2$ $0 \leq t \leq 1$

Method 1

$$W = \int_0^1 (-t^2 i + t j).\, (1i + 2t j) dt$$

$$W = \int_0^1 [-t^2 + 2t^2] dt = \frac{1}{3} <$$

Method 2

$$F = Mi + Nj$$
, $d\vec{r} = dxi + dyj$

$$W=\int_C ec F.\, dec r$$
 $W=\int_C M dx + N dy$ $d\mathsf{x}=\mathsf{dt}$, $d\mathsf{y}=(2\mathsf{t})\mathsf{dt}$ $W=\int_C M dt + N(2t) dt$

$$W=\int_C -t^2 dt + 2t^2 dt$$

F = -yi + xj

Geometric understanding

$$egin{aligned} dec{r} = < dx, dy> &= \hat{T} ds \ &rac{dec{r}}{dt} = < rac{dx}{dt}, rac{dy}{dt}> &= \hat{T} rac{ds}{dt} \ &W = \int_C ec{F}. \, dec{r} \ &W = \int_C M dx + N dy = \int_C ec{F}. \, \hat{T} ds \end{aligned}$$

Example

Circle of radius a at origin, counter clockwise.

$$ec{F}=xi+yj$$

 $ec{F}$ is perpendicular to $ec{T}$. Therefore

$$\int_C \vec{F} \cdot \hat{T} ds = 0$$

Example

Circle of radius a at origin, counter clockwise.

$$ec{F} = -yi + xj$$

 $ec{F}$ is parallel to $ec{T}$. Therefore

$$\int_C ec F.\,\hat T ds = \int_C |ec F| ds = \int_0^{2\pi} a^2 ds = 2\pi a^2$$