Double Integration

Background

$$Vpprox \sum_{i=1}^n \sum_{j=1}^m f(x_i^*,y_j^*)\Delta A$$

$$V = \lim_{n,m o \infty} \sum_{i=1}^n \sum_{j=1}^m f(x_i^*,y_j^*) \Delta A$$

$$V = \iint_R f(x,y) dx dy$$

Example

Use the mid-point rule to estimate the volume under $f(x,y) = x^{2} + y$ and above the rectangle given by $-1 \le x \le 3$, $0 \le y \le 4$ in the xy plane. Use 4 subdivisions in the x direction and 2 divisions in the y direction.

$$Vpprox \sum_{i=1}^4 \sum_{j=1}^1 f(x*_i,y*_j)(2)(1)=68$$

The exact volume (using integration) =69.3333

Example

Integrate the following firstly with respect to x, then again but firstly with respect to y

$$\iint_R (12x-18y) dA$$
 where $R=[-1,4] imes [2,3]$

$$\int_{2}^{3} \int_{-1}^{4} (12x - 18y) dx dy = -135$$

$$\int_{-1}^{4} \int_{2}^{3} (12x - 18y) dy dx = -135$$

Example

Find the area of this region.

$$A=\iint_R dxdy$$

$$A=\int\int_{g_1(x)}^{g_2(x)}dydx$$

$$A=\int [g_2(x)-g_1(x)]dx$$

Example- polar coordinates

 $\iint_D 2xydA$ between the circles with radius 2 and radius 5, centred around the origin and lies in the first quadrant.

$$\int_{2}^{5}\int_{0}^{rac{\pi}{2}}2rcos(heta)rsin(heta)rdrd heta=rac{609}{4}$$

Example- polar coordinates

 $\iint_D e^{x^2+y^2} dA$, unit disk centered around the origin.

$$\int_0^{2\pi}\int_0^1e^{r^2}rdrd heta=\pi(e-1)$$