
Implicit Function Theorem

Background

Function

Function is one-to-one or many to one. One-to-one function is one x values corresponds
to one y values.

Projection of  onto 

Projection = 

Resolved vector of  onto 

Tangential planes

Plane: 

F(x,y,z)= z-f(x,y)

Plane: 

Chain Rule

w = w(x,y,z), x = x(t), y= y(t), z= z(t)

level curves

z = 2x + y

All these level curves will be lines e.g.

→a →b

|a|cos(θ) = a.b
|b|

→a →b

Resolved = Projection × b̂

|resolved| = |Projection|

a(x − x0) + b(y − y0) + c(z − z0) = 0

z0 = f(x0, y0).

ΔF =< −fx, −fy, 1 >

ΔFx0,y0,z0 =< −fx(x0, y0), −fy(x0, y0), 1 >

−fx(x0, y0)(x − x0) − fy(x0, y0)(y − y0) + (z − z0) = 0

dw
dt = wx

dx
dt + wy

dy

dt + wz
dx
dt

dw
dt

= ∇w. d →F
dt



0 = 2x + y

1 = 2x + y

 e.g 

Example

z= f(x,y) = xy

e.g. xy = 2

Level Surface

A surface S in the  is called a level surface of f(x,y,z) if the value of f on every point S is
some fixed constant. For example every body in a class room is the level surface of 37
degrees celsius- providing students do not have fever.

z = x2 + y2 1 = x2 + y2

R3





Gradient

Gradient is perpendicular to the level curves.

It points towards higher values.

Example 1

Example 2

∇f =

⎛⎜⎝ ∂f
∂x
∂f
∂y

∂f
∂z

⎞⎟⎠f(x, y) = x2 + y2

∇f = ( )
∂f
∂x
∂f
∂y

https://www.geogebra.org/m/sWsGNs86


 

Example 2

,

Level surface 

This is a plane

The normal to the plane is the vector 

This is the same as the gradient.

Example 3

 - circular parabola.

z = f(x, y) = xy

w = a1x + a2y + a3z

∇w =< a1, a2, a3 >

c = a1x + a2y + a3z

< a1, a2, a3 >

f(x, y, z) = x2 + y2 − z

0 = x2 + y2 − z



 - circular parabola where the vertex is at -1.

Gradient is the direction of steepest ascent

Example 4

,

Level curve 

This is a circle where 

The normal to the tangent is the vector 

This is the same direction as the gradient.

Proof that normal to the tangent plane is the gradient

 stays on the level surface .

velocity vector is going to be tangential to the curve and also tangential to level surface
(curve is inside the surface).

 is tangential to the level surface .

By the chain rule 

since w = c, therefore 

Hence the velocity as the gradient are perpendicular to eachother

The gradient is also perpendicular to any vector on the tangential plane.

1 = x2 + y2 − z

w = x2 + y2

∇w =< 2x, 2y, >

c = x2 + y2

dy

dx = −x
y

< x, y, >

→r = →r(t) w = F(x, y, z) = c

→r =< x(t), y(t), z(t) >

→v = d→r
dt

w = c

dw
dt

= ∇w. d→r
dt

dw
dt

= ∇w. →v

dw
dt = 0



Finding Tangential plane to a surface

Level surface  at (2,1,1)

Normal to tangential plane 

Tangential plane: 

Alternative method

at (2,1,1) 

at (2,1,1) 

We stay on the level surface 

x2 + y2 − z2 = 4

∇w =< 2x, 2y, −2z >

< 4, 2, −2 >

4x + 2y − 2z = 8

dw = 2xdx + 2ydy − 2zdz

dw = 4dx + 2dy − 2dz

ΔW ≈ 4Δx + 2Δy − 2Δz

ΔW = 0

4(x − 2) + 2(y − 1) − 2(z − 1) = 0



Directional derivative

Fix a direction  where 

Implicit Function Theorem

 in a neighbourhood of 

df = 

If these conditions are met then there is an explicit function y=f(x)

Implicit Function Theorem Examples

→u =< u1,u2 > |→u| = 1

x(s) = x0 + su1

y(s) = y0 + su2

D
→uf(x0, y0) =

lims→0f(x0+su1,y0+su2)−f(x0,y0)
s

D
→uf(x0, y0) = d

ds [f(x(s), y(s))]|s=0

D
→uf(x0, y0) = fx|(x0,y0)

dx
ds + fy|(x0,y0)

dy

ds

D
→uf(x0, y0) = fx|(x0,y0)u1 + fy|(x0,y0)u2

D
→uf(x0, y0) = ∇f|x0,y0. →u

F(x, y)ϵC1 (x0, y0)

F(x0, y0) = 0

∂f
∂y (x0, y0) ≠ 0

∂f
∂y dy + ∂f

∂x dx

https://www.geogebra.org/m/Bx8nFMNc


Example 1

dF = 

Interval is (-1,1)

 on I or  on I

Example 2

z = f(x,y)

Tangent line 

x2 + y2 = 1

F(x, y) = x2 + y2 − 1 = 0

(2y)dy + (2x)dx

dy

dx
= −x

y

f(x) = √1 − x2 f(x) = −√1 − x2

→n =< ∂F
∂x , ∂F

∂y , ∂F
∂z >

m = dz
dx

= ∂f
∂x

=< 1, ∂f
∂x , 0 >



Example 3

This function is strictly increasing

exactly one root

dF = 

Generalisation- n + 1 coordinates

 in a neighbourhood of 

If these conditions are met then there is an explicit function 

 

Example 4

→n. Tangent line = ∂F
∂x + ∂F

∂y
∂f
∂x = 0

F(x, y) = y5 + y3 + y + x = 0

Fy(x, y) = 5y4 + 3y2 + 1 > 0

(5y4 + 3y2 + 1)dy + (x)dx

dy

dx = −1
(5y4+3y2+1)

→x = (x1,x2, ⋯ ,xn)

F(→x, y)ϵC1 N0( →x0, y0)

F(N0) = 0

∂f
∂y (N0) ≠ 0

y = f(→x)

dy

dxi
= ∂f

∂xi
= −

∂F
∂xi
∂F
∂y

(i = 1, 2, 3, ⋯ , k)

F(x, y, z) = 3x2y − yz2 − 4xz − 7 = 0



We can show that near (-1,1,2) we can write y = f(x,z)

We can find y explicitly without the theorem.

Using the quotient rule

Example 5

In this example, we can write z = f(x,y) explicitly by the quadratic formula

The theorem fails at 

Example 6

 therefore 

There is an explicit function at any point.

However at (0,0)

The theorem does not apply

F(−1, 1, 2) = 0

∂F
∂x = 6xy − 4z

∂F
∂y = 3x2 − z2

∂F
∂z = 2zy

dy

dx
|(−1,2) = ∂f

∂x |(−1,2) = − 6xy−4z
3x2−z2 |(−1,1,2) = −14

y = f(x, z) = 4xz+7
3x2−z2

∂f
∂x |(−1,2) = −14

F(x, y, z) = 3x2y − yz2 − 4xz − 7 = 0

z = 4x±√(−4x)2−4(−y)(−7+3x2y)
6x2y

N0(−1, 1, 2)

∂F
∂z = −2zy − 4x

∂F
∂z (N0) = 0

F(x, y) = (x − y)3

F(x, y) = 0 y = x

∂f
∂x (0, 0) = 0

∂f
∂y (0, 0) = 0



Proof for two variables

Case 1

At a neighbourhood of 

 is strictly increasing in terms of y.

There exists a  such that 

There exists a  such that 

For every x near 

For such an x near , since

, F(x,y) is increasing (as an increasing function of y)

Summary if  therefore

assuming (x,y) are near 

∂F
∂y (x0, y0) ≠ 0

∂F
∂y > 0

(x0, y0)

F(x0, y)

F(x0, y0) = 0

y1 F(x0, y1) > 0

y2 F(x0, y2) < 0

x0

F(x, y1) > 0

F(x, y2) < 0

x0

∂f
∂y > 0

∂F
∂y (x0, y0) > 0

(x0, y0)

∂F
∂y (x, y) > 0



Therefore there exists a unique y such that 

f(x) is an implicit function with x as the domain.

This proves that y=f(x) exists and is unique proof of the formula for f'(x)

F(x,f(x)) = 0

By the chain rule

The gradient is perpendicular to level surfaces

Suppose we have a function  at 

Denote by S the level surface 

Assume that 

Say for example that 

, 

By the implicit function theorem

 , 

 in a neighbourhood

 near 

Hence near  the level surface S is the graph of f(x,y).

The tangent plane at 

F(x, y) = 0

∂F
∂x + ∂F

∂y f
′(x) = 0

f ′(x) =
−∂F
∂x
∂F
∂y

g(x, y, z)ϵC1 M0(x0, y0, z0)

g(M0) = g(x0, y0, z0) = c0

g(x, y, z) = c0

∇g(x0, y0, z0) ≠ 0

∂g
∂z ≠ 0

F(x, y, z) = g(x, y, z) − c0

F(M0) = 0 FϵC1

∂F
∂z (M0) ≠ 0

fϵC1 z0 = f(x0, y0)

F(x, y, f(x, y)) = 0

g(x, y, f(x, y)) = c0 M0

M0

M0

z = f(x0, y0) + ∂f
∂x (x0, y0)(x − x0) + ∂f

∂y (x0, y0)(y − y0)

z = f(x0, y0) +
− ∂F

∂x
∂F
∂z

(x0, y0)(x − x0) +
− ∂F

∂y
∂F
∂z

(x0, y0)(y − y0)

∂F



Hence the gradient of g is perpendicular to the tangential plane to S at .

The gradient of g is the normal of the tangential plane.

Example

Find the tangential plane to the surface  at (0,0,R)

Normal of the tangent 

2R z = d

Tangent plane: z = R 

Example 6

Example 7

z = f(x0, y0) +
− ∂g

∂x
∂g
∂z

(x0, y0)(x − x0) +
− ∂F

∂y
∂F
∂z

(x0, y0)(y − y0)

∂g
∂x (x − x0) + ∂g

∂y (y − y0) + ∂g
∂z (z − z0) = 0

M0

x2 + y2 + z2 = R2

g(x, y, z) = x2 + y2 + z2 − R2

∇g =< 2x, 2y, 2z >

< 0, 0, 2R >

x2 + y2 + z2 = sin(zy)

F(x, y, z) = x2 + y2 + z2 − sin(zy)

∂z
∂x = − Fx

Fy

∂z
∂x = − 2x

2z−ycos(zy)

∂z
∂y = − Fx

Fz

∂z
∂y = − 2y−zcos(zy)

2z−ycos(zy)

x2 + y4 + z3 + 3xy2 = 8



Method 2- implicit differentiation

Example 8

F(x, y) = x2 + y4 + z3 + 3xy2 − 8

Fx(x, y) = 2x + 3y2

Fy(x, y) = 4y3 + 6xy

Fz(x, y) = −3z2

∂z
∂x = − 2x+3y2

−3z2

∂z
∂y = − 4y3+6xy

−3z2

2x + 3z2 ∂z
∂x + 3y2 = 8

∂z
∂x = − 2x+3y2

−3z2

xy3 + x2z2 = 6

F(x, y) = xy3 + x2z2 − 6

Fx(x, y) = y3 + 2xz2

Fy(x, y) = 3xy2

Fz(x, y) = 2zx2

∂z
∂x = − y3+2xz2

2zx2

∂z
∂y = − 3xy2

2zx2


